Skip to content Skip to footer

Journal of Science and Engineering Papers

Doi: https://doi.org/10.62275/josep.24.1000001

ISSN: 3006-3191 (Online)

ISSN: 3079-8175 (Print)

Science and Engineering for the Comprehensive Futures                                                                                                                                                                                                                             Call for Article

Design and Performance of a Chemically Crosslinked CMC/PVP Hydrogel for Drug Release

Volume: 03
Issue: 01
Views: 36
Original Research Article
Pharmaceutical Science
Design and Performance of a Chemically Crosslinked CMC/PVP Hydrogel for Drug Release
Most. Arifa Sultana, Md. Shameem Ahsan, Ajit Mondal, Anoy Chowdhury, Md. Abdul Hassib, Afsar Alom, Antor Kumer Mondol, and Md. Tamzid Hossain Molla*
Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi-6205, Bangladesh
Year: 2026
Page: 145-152

This work is licensed under CC BY-SA 4.0

Crossref logo

Downloads : 36

Abstract

Rice husk is an abundant natural resource that contains about 33% cellulose. Here we focused on the extraction and develop of carboxymethyl cellulose (CMC) from rice husks and its utilization in developing CMC-polyvinylpyrrolidone (PVP) blended hydrogel (HGEL) membranes with varying CMC:PVP ratios (80:20, 60:40, and 50:50 w/w). The controlled release of pharmaceuticals and targeted drug administration depend on pH-responsive drug delivery systems. We synthesized an innovative pH-sensitive, biodegradable, and antibacterial hydrogels through blending and solution casting method, using glutaraldehyde as a crosslinking agent. Structural and physicochemical characterization confirmed successful hydrogel formation: FTIR validated crosslinked network development, TGA demonstrated enhanced thermal stability, and SEM revealed uniform and interconnected morphologies. Swelling studies showed that swelling capacity could be precisely tuned by altering the CMC/PVP composition, with higher pH conditions markedly increasing swelling, confirming the pH-responsive behavior of the hydrogels. The drug (salicylic acid) release profiles from gel membrane were conducted into two separate release media (pH 1.4, and pH 7.4), with samples evaluated spectrophotometric analysis at 294 nm wavelength using a UV-Vis spectrophotometer, showed a consistent and controlled release profile. Biodegradability tests in soil revealed that the hydrogel sample degraded gradually up to 72.65% within 15 days. Moreover, upon testing on  bacteria Staphylococcus aureus (G+) & Escherichia coli (G-) bacterium, the sample (50:50) gave 11 mm of inhibition zone diameter which confirmed that the synthesized hydrogel can be used for wound dressing and other biomedical applications. Altogether hydrogels underlined as a prospective category of eco-friendly and tunable biomaterials for future healthcare innovations.

References

1. Thakur, S., Thakur, V. K., and Arotiba, O. A., (2018). History, classification, properties and application of hydrogels: An overview. Hydrogels: Recent Advances: 29-50.
2. Brannon-Peppas, L. and Peppas, N. A., (1991). Equilibrium swelling behavior of pH-sensitive hydrogels. Chemical Engineering Science, 46(3): 715-722.
3. Kloxin, A. M., Kloxin, C. J., Bowman, C. N., and Anseth, K. S., (2010). Mechanical properties of cellularly responsive hydrogels and their experimental determination. Advanced materials, 22(31): 3484-3494.
4. Peppas, N. A., Bures, P., Leobandung, W., and Ichikawa, H., (2000). Hydrogels in pharmaceutical formulations. European journal of pharmaceutics and biopharmaceutics, 50(1): 27-46.
5. Qiu, Y. and Park, K., (2001). Environment-sensitive hydrogels for drug delivery. Advanced drug delivery reviews, 53(3): 321-339.
6. He, B., Wan, E., and Chan-Park, M. B., (2006). Synthesis and degradation of biodegradable photo-cross-linked poly (α, β-malic acid)-based hydrogel. Chemistry of materials, 18(17): 3946-3955.
7. Treloar, L., (1952). The thermo dynamic study of rubber-like elasticity. Proceedings of the Royal Society of London. Series B-Biological Sciences, 139(897): 506-512.
8. Kumar, S. and Pandey, A. K., (2013). Chemistry and biological activities of flavonoids: an overview. The scientific world journal, 2013(1): 162750.
9. Kamath, K. R. and Park, K., (1993). Biodegradable hydrogels in drug delivery. Advanced drug delivery reviews, 11(1-2): 59-84.
10. Peppas, N. A., Huang, Y., Torres-Lugo, M., Ward, J., and Zhang, J., (2000). Physicochemical foundations and structural design of hydrogels in medicine and biology. Annual review of biomedical engineering, 2(1): 9-29.
11. Li, M., Cha, D. J., Lai, Y., Villaruz, A. E., Sturdevant, D. E., and Otto, M., (2007). The antimicrobial peptide‐sensing system aps of Staphylococcus aureus. Molecular microbiology, 66(5): 1136-1147.
12. Mitsumata, T., Suemitsu, Y., Fujii, K., Fujii, T., Taniguchi, T., and Koyama, K., (2003). pH-response of chitosan, κ-carrageenan, carboxymethyl cellulose sodium salt complex hydrogels. Polymer, 44(23): 7103-7111.
13. Hirsch, S. G. and Spontak, R. J., (2002). Temperature-dependent property development in hydrogels derived from hydroxypropylcellulose. Polymer, 43(1): 123-129.
14. Jaiswal, M. and Koul, V., (2013). Assessment of multicomponent hydrogel scaffolds of poly (acrylic acid-2-hydroxy ethyl methacrylate)/gelatin for tissue engineering applications. Journal of biomaterials applications, 27(7): 848-861.
15. Ricka, J. and Tanaka, T., (1984). Swelling of ionic gels: quantitative performance of the Donnan theory. Macromolecules, 17(12): 2916-2921.
16. Zhu, J. and Marchant, R. E., (2011). Design properties of hydrogel tissue-engineering scaffolds. Expert review of medical devices, 8(5): 607-626.
17. Kabiri, K., Omidian, H., Zohuriaan‐Mehr, M., and Doroudiani, S., (2011). Superabsorbent hydrogel composites and nanocomposites: a review. Polymer composites, 32(2): 277-289.
18. Taşdelen, B., Erdoğan, S., and Bekar, B., (2018). Radiation synthesis and characterization of chitosan/hyraluronic acid/hydroxyapatite hydrogels: Drug uptake and drug delivery systems. Materials today: proceedings, 5(8): 15990-15997.
19. Katono, H., Sanui, K., Ogata, N., Okano, T., and Sakurai, Y., (1991). Drug release off behavior and deswelling kinetics of thermo-responsive IPNs composed of poly (acrylamide-co-butyl methacrylate) and poly (acrylic acid). Polymer journal, 23(10): 1179-1189.
20. Shantha, K. and Harding, D., (2002). Synthesis and evaluation of sucrose‐containing polymeric hydrogels for oral drug delivery. Journal of applied polymer science, 84(14): 2597-2604.
21. Sri, B., Ashok, V., and Arkendu, C., (2012). As a review on hydrogels as drug delivery in the pharmaceutical field. Int J Pharm Chem Sci, 1(2): 642-61.
22. Ashley, G. W., Henise, J., Reid, R., and Santi, D. V., (2013). Hydrogel drug delivery system with predictable and tunable drug release and degradation rates. Proceedings of the national academy of sciences, 110(6): 2318-2323.
23. Park, C. H., Jeong, L., Cho, D., Kwon, O. H., and Park, W. H., (2013). Effect of methylcellulose on the formation and drug release behavior of silk fibroin hydrogel. Carbohydrate polymers, 98(1): 1179-1185.
24. Gerami, S. E., Pourmadadi, M., Fatoorehchi, H., Yazdian, F., Rashedi, H., and Nigjeh, M. N., (2021). Preparation of pH-sensitive chitosan/polyvinylpyrrolidone/α-Fe2O3 nanocomposite for drug delivery application: Emphasis on ameliorating restrictions. International Journal of Biological Macromolecules, 173: 409-420.
25. Palem, R. R., Rao, K. M., Shimoga, G., Saratale, R. G., Shinde, S. K., Ghodake, G. S., and Lee, S.-H., (2021). Physicochemical characterization, drug release, and biocompatibility evaluation of carboxymethyl cellulose-based hydrogels reinforced with sepiolite nanoclay. International Journal of Biological Macromolecules, 178: 464-476.
26. Sachan, N. and Bhattacharya, A., (2009). Modeling and characterization of drug release from glutinous rice starch based hydrogel beads for controlled drug delivery. International Journal of Health Research, 2(1).
27. Shaikh, H. M., Anis, A., Poulose, A. M., Al-Zahrani, S. M., Madhar, N. A., Alhamidi, A., and Alam, M. A., (2021). Isolation and characterization of alpha and nanocrystalline cellulose from date palm (Phoenix dactylifera L.) trunk mesh. Polymers, 13(11): 1893.
28. Jia, F., Liu, H.-j., and Zhang, G.-g., (2016). Preparation of carboxymethyl cellulose from corncob. Procedia Environmental Sciences, 31: 98-102.
29. Pal, K., Banthia, A. K., and Majumdar, D. K., (2007). Preparation and characterization of polyvinyl alcohol-gelatin hydrogel membranes for biomedical applications. Aaps Pharmscitech, 8(1): 21.
30. Nagasawa, N., Yagi, T., Kume, T., and Yoshii, F., (2004). Radiation crosslinking of carboxymethyl starch. Carbohydrate Polymers, 58(2): 109-113.
31. Mishra, R. K., Datt, M., and Banthia, A. K., (2008). Synthesis and characterization of pectin/PVP hydrogel membranes for drug delivery system. Aaps Pharmscitech, 9(2): 395-403.
32. Bonev, B., Hooper, J., and Parisot, J., (2008). Principles of assessing bacterial susceptibility to antibiotics using the agar diffusion method. Journal of antimicrobial chemotherapy, 61(6): 1295-1301.
33. Ali, A. E.-H., Shawky, H., Abd El Rehim, H., and Hegazy, E., (2003). Synthesis and characterization of PVP/AAc copolymer hydrogel and its applications in the removal of heavy metals from aqueous solution. European polymer journal, 39(12): 2337-2344.
34. Sikdar, B., Basak, R., and Mitra, B., (1995). Studies on graft copolymerization of acrylonitrile onto jute fiber with permanganate ion initiation system in presence of air. Journal of applied polymer science, 55(12): 1673-1682.
35. Kundukad, B., Schussman, M., Yang, K., Seviour, T., Yang, L., Rice, S. A., Kjelleberg, S., and Doyle, P. S., (2017). Mechanistic action of weak acid drugs on biofilms. Scientific reports, 7(1): 4783.
36. Singh, B., Chauhan, G., Sharma, D., and Chauhan, N., (2007). The release dynamics of salicylic acid and tetracycline hydrochloride from the psyllium and polyacrylamide based hydrogels (II). Carbohydrate polymers, 67(4): 559-565.

How to Cite

Most. Arifa Sultana, Md. Shameem Ahsan, Ajit Mondal, Anoy Chowdhury, Md. Abdul Hassib, Afsar Alom, Antor Kumer Mondol, and Md. Tamzid Hossain Molla*
I.H. 2024. Design and Performance of a Chemically Crosslinked CMC/PVP Hydrogel for Drug Release. Journal of Science and Engineering Papers . 
January 21, 2026.
  Doi: 10.62275/josep.26.1000023.
Most. Arifa Sultana, Md. Shameem Ahsan, Ajit Mondal, Anoy Chowdhury, Md. Abdul Hassib, Afsar Alom, Antor Kumer Mondol, and Md. Tamzid Hossain Molla*
Design and Performance of a Chemically Crosslinked CMC/PVP Hydrogel for Drug Release.
  journal 2026, 21.
Most. Arifa Sultana, Md. Shameem Ahsan, Ajit Mondal, Anoy Chowdhury, Md. Abdul Hassib, Afsar Alom, Antor Kumer Mondol, and Md. Tamzid Hossain Molla*
I.H. 2024. Design and Performance of a Chemically Crosslinked CMC/PVP Hydrogel for Drug Release. .Journal of Science and Engineering Papers . 
21 (1).
  https://doi.org/10.62275/josep.26.1000023.
Most. Arifa Sultana, Md. Shameem Ahsan, Ajit Mondal, Anoy Chowdhury, Md. Abdul Hassib, Afsar Alom, Antor Kumer Mondol, and Md. Tamzid Hossain Molla*
I.H. Design and Performance of a Chemically Crosslinked CMC/PVP Hydrogel for Drug Release. Journal of Science and Engineering Papers . 
2026.
Most. Arifa Sultana, Md. Shameem Ahsan, Ajit Mondal, Anoy Chowdhury, Md. Abdul Hassib, Afsar Alom, Antor Kumer Mondol, and Md. Tamzid Hossain Molla*
2024." Design and Performance of a Chemically Crosslinked CMC/PVP Hydrogel for Drug Release." Journal of Science and Engineering Papers . 
21 (1).
  https://doi.org/10.62275/josep.26.1000023.
Most. Arifa Sultana, Md. Shameem Ahsan, Ajit Mondal, Anoy Chowdhury, Md. Abdul Hassib, Afsar Alom, Antor Kumer Mondol, and Md. Tamzid Hossain Molla*
I.H. 2024. " Design and Performance of a Chemically Crosslinked CMC/PVP Hydrogel for Drug Release." Journal of Science and Engineering Papers . 
21 (1).
  https://doi.org/10.62275/josep.26.1000023.
Most. Arifa Sultana, Md. Shameem Ahsan, Ajit Mondal, Anoy Chowdhury, Md. Abdul Hassib, Afsar Alom, Antor Kumer Mondol, and Md. Tamzid Hossain Molla*
, "Design and Performance of a Chemically Crosslinked CMC/PVP Hydrogel for Drug Release". .Journal of Science and Engineering Papers . 
  journal Jan, 2026.
Most. Arifa Sultana, Md. Shameem Ahsan, Ajit Mondal, Anoy Chowdhury, Md. Abdul Hassib, Afsar Alom, Antor Kumer Mondol, and Md. Tamzid Hossain Molla*
"Design and Performance of a Chemically Crosslinked CMC/PVP Hydrogel for Drug Release." Journal of Science and Engineering Papers . 
Jan, 2026.
  https://doi.org/10.62275/josep.26.1000023.
Most. Arifa Sultana, Md. Shameem Ahsan, Ajit Mondal, Anoy Chowdhury, Md. Abdul Hassib, Afsar Alom, Antor Kumer Mondol, and Md. Tamzid Hossain Molla*
"Design and Performance of a Chemically Crosslinked CMC/PVP Hydrogel for Drug Release." Journal of Science and Engineering Papers . 
(Jan 21, 2026).
  https://doi.org/10.62275/josep.26.1000023.
Most. Arifa Sultana, Md. Shameem Ahsan, Ajit Mondal, Anoy Chowdhury, Md. Abdul Hassib, Afsar Alom, Antor Kumer Mondol, and Md. Tamzid Hossain Molla*
Design and Performance of a Chemically Crosslinked CMC/PVP Hydrogel for Drug Release. Journal of Science and Engineering Papers . 
  journal [ Internet ] 21 Jan, 2026.
  [ Cited 21 Jan, 2026 ]
21 (1).
  https://doi.org/10.62275/josep.26.1000023.

Keywords

rice husk, carboxymethyl cellulose, pH-responsive hydrogel, biodegradable, antimicrobial, drug delivery system

Journal Metrics

Acceptance rate

-

Submission to final decision

-

Acceptance to publication

-

CiteScore

-

Journal Citation Indicator

-

Impact Score

-

APC

$12.5