Skip to content Skip to footer

Journal of Science and Engineering Papers

Doi: https://doi.org/10.62275/josep.24.1000001

ISSN: 3006-3191 (Online)

ISSN: 3079-8175 (Print)

Science and Engineering for the Comprehensive Futures                                                                                                                                                                                                                             Call for Article

Comparative Catalytic Efficiency and Polycondensation Kinetics of Succinic Acid and 1,3-Propanediol: A Kinetic Study of p-Toluene sulfonic Acid (p-TSA) versus AlCl3

Volume: 03
Issue: 01
Views: 23
Original Research Article
Engineering
Comparative Catalytic Efficiency and Polycondensation Kinetics of Succinic Acid and 1,3-Propanediol: A Kinetic Study of p-Toluene sulfonic Acid (p-TSA) versus AlCl3
Md. Anwarul Karim*, and Md. Abu Bakr
Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi-6205, Bangladesh.
Year: 2026
Page: 159-167

This work is licensed under CC BY-SA 4.0

Crossref logo

Downloads : 23

Abstract

This study presents a comparative investigation of two common catalysts – p-toluene sulfonic acid (p-TSA, a strong organic Brønsted acid) and aluminum chloride (AlCl₃, a Lewis acid) over non-catalyst one in the polycondensation of succinic acid (SA) with 1,3-propane diol (PDO) to form poly (trimethylene succinate) (PTSu). Reaction parameters (temperature, catalyst loading, and time) were systematically varied to evaluate catalyst efficiency with respect to (i) degree of polymerization, (ii) the rate of reaction of polycondensation, (iii) esterification rate, (iv) order of the reaction, and (v) activation energy of the reaction. Analytical techniques included FTIR & ¹H NMR. Mechanistic differences between Brønsted and Lewis acid catalysis are discussed. Results (representative data and trends are provided) indicate that p-TSA yields faster initial esterification and higher final molecular weights under identical conditions. In contrast, the AlCl₃ catalyst exhibits similar activity to the p-TSA catalyst. Among the non-catalyst, p-TSA, and AlCl3 catalysts, the p-TSA and AlCl3 catalysts performed well in the polycondensation reaction over the non-catalyst one.

References

1. Mochizuki, M., Hirami, M.(2019). Structural effects on the biodegradation of aliphatic polyesters. Polymers for Advanced Technologies, 8:203–209. https://doi.org/10.1002/(SICI)1099-1581(199704)8:4<203::AID-PAT627>3.0.CO;2-3
2. Carothers, W.H. (1931). Polymerization. Chem Rev 8:353–425.
3. Takiyama, E., Harigai, N., Hokari, T.(1993). Production of aliphatic polyester. JP Patent H5-70566.
4. Takiyama, E., Seki, S.(1993). Production of aliphatic polyester. JP Patent H5-70572.
5. Takiyama, E., Fujimaki, T., Seki, S., Hokari, T., Hatano, Y. (1994). Method for manufacturing biodegradable high molecular aliphatic polyester. US Patent 5,310,782.
6. Takiyama, E., Hatano, Y., Fujimaki, T., Seki, S., Hokari, T., Hosogane, T., Harigai, N.(1995). Method of producing a high molecular weight aliphatic polyester and film thereof. US Patent 5,436,056.
7. Fujimaki, T.(1998). Processability and properties of aliphatic polyesters, ‘‘BIONOLLE”, synthesized by polycondensation reaction. Polym. Degrad. Stab., 59:209–214.
8. Gan, Z., Abe, H., Doi, Y.(2000). Biodegradable poly(ethylene succinate) (PES) 1. Crystal growth kinetics and morphology. Biomacromolecules, 1:704–712.
9. Gan, Z., Abe, H., Doi, Y.(2000). Biodegradable poly(ethylene succinate) (PES) 2. Crystal morphology of melt-crystallized ultrathin film and its change after enzymatic degradation. Biomacromolecules, 1:713–720.
10. Qiu, Z., Ikehara, T., Nishi, T.(2003). Crystallization behaviour of biodegradable poly(ethylene succinate) from the amorphous state. Polymer, 44:5429–5437.
11. Qiu, Z., Komura, M., Ikehara, T., Nishi, T.(2003). DSC and TMDSC study of melting behaviour of poly(butylene succinate) and poly(ethylene succinate). Polymer, 44:7781–7785.
12. Papageorgiou, G.Z., Bikiaris, D.N.(2005). Crystallization and melting behavior of three biodegradable poly(alkylene succinates). A comparative study. Polymer, 46:12081–12092.
13. Bikiaris, D.N., Papageorgiou, G.Z., Achilias, D.S.(2006). Synthesis and comparative biodegradability studies of three poly(alkylene succinate)s. Polym. Degrad. Stab., 91:31–43.
14. Chrissafis, K., Paraskevopoulos, K.M., Bikiaris, D.N.(2005). Thermal degradation mechanism of poly(ethylene succinate) and poly(butylene succinate): comparative study. Thermochim Acta, 435:142–150.
15. Gan, Z., Abe, H., Doi, Y.(2001). Crystallization, melting, and enzymatic degradation of biodegradable poly(butylene succinate-co-14 mol% ethylene succinate) copolyester. Biomacromolecules, 2: 313–321.
16. Gan, Z., Abe, H., Kurokawa, H., Doi, Y. (2001). Solid-state microstructures, thermal properties, and crystallization of biodegradable poly(butylene succinate) (PBS) and its copolyesters. Biomacromolecules, 22:605–613.
17. Ahn, B.D., Kim, S.H., Kim, Y.H., Yang, J.S.(2001). Synthesis and characterization of the biodegradable copolymers from succinic acid and aliphatic acid with 1,4-butanediol. J. Appl. Polym. Sci., 82:2808–2826.
18. Nikolic, M.S., Djonlagic, J.(2001). Synthesis and characterization of biodegradable poly(butylene succinate-co-butylene adipate)s. Polym. Degrad. Stab., 74:263–270.
19. Kuwabara, K., Gan, Z., Nakamura, T., Abe, H., Doi, Y.(2002). Molecular mobility and phase structure of biodegradable poly(butylene succinate) and poly(butylene succinate-co-butylene adipate). Biomacromolecules, 3:1095–1100.
20. Zhu, C., Zhang, Z., Liu, Q., Wang, Z., Jin, J.(2003). Synthesis and biodegradation of aliphatic polyesters from dicarboxylic acids and diols. J. Appl. Polym. Sci., 90:982–990.
21. Cao, A., Okamura, T., Nakayama, K., Inoue, Y., Masuda, T.(2002). Studies on syntheses and physical properties of biodegradable aliphatic poly(butylene succinate-co-ethylene succinate)s and poly(butylene succinate-co-diethylene glycol succinate)s. Polym. Degrad. Stab., 8:107–117.
22. Cao, A., Okamura, T., Ishiguro, C., Nakayama, K., Inoue, Y., Masuda, T.(2002). Studies on syntheses and physical characterization of biodegradable aliphatic poly(butylene succinate-co-e-caprolactone)s. Polymer, 43:671–679.
23. Kim, M.N., Kim, K.H., Jin, H.J., Park, J.K., Yoon, J.S.(2001). Biodegradability of ethyl and n-octyl branched poly(ethylene adipate) and poly(butylene succinate). Eur. Polym. J., 37:1843–1847.
24. Chae, H.G., Park, S.H., Kim, B.C., Kim, D.K.(2004). Effect of methyl substitution of the ethylene unit on the physical properties of poly(butylene succinate). J. Polym. Sci. Part B: Polym. Phys., 42:1759–1766.
25. Oishi, A., Nakano, H., Fujita, K., Yuasa, M., Taguchi, Y.(2002). Copolymerization of poly(butylene succinate) with 3-alkoxy-1,2-propanediols. Polym. J. 34:742–747.
26. Mani, R., Bhattacharya, M., Leriche, C., Nie, L., Bassi, S.(2002). Synthesis and characterization of functional aliphatic copolyesters. J. Polym. Sci. Part A: Polym. Chem., 40:3232–9.
27. Nikolic, M.S., Poleti, D., Djonlagic, J. (2003). Synthesis and characterization of biodegradable poly(butylene succinate-co-butylene fumarate)s. Eur. Polym. J., 39:2183–92.
28. Mochizuki, M., Mukai, K., Yamada, K., Ichise, N., Murase, S., Iwaya, Y.(1997). Structure effects upon enzymatic hydrolysis of poly(butylene succinate-coethylene succinate)s. Macromolecules, 30:7403–7.
29. Rizzarelli, P., Puglisi, C., Montaudo, G.(2004). Soil burial and enzymatic degradation in solution of aliphatic co-polyesters. Polym. Degrad. Stab., 85:855–863.
30. Iwata, T., Doi, Y., Isono, K., Yoshida, Y.(2001). Morphology and enzymatic degradation of solution-grown single crystals of poly(ethylene succinate). Macromolecules, 34:7343–7348.
31. Cho, K., Lee, J., Kwon, K.(2001) Hydrolytic degradation behavior of poly(butylene succinate)s with different crystalline morphologies. J. Appl. Polym. Sci.,79:1025–1033.
32. Slaugh, L.H., Weider, P.R.(1993). Process for making 3-hydroxypropanal and 1,3-propanediol. US Patent 5,256,827.
33. Haynie, S.L., Wagner, L.W. (1997). Process for making 1,3-propanediol from carbohydrates using mixed microbial cultures. US Patent 5,599,689.
34. Emptage, M., Haynie, S.L., Laffend, L.A., Pucci, J.P., Whited, G.(2003). Process for the biological production of 1,3-propanediol with high titer. US Patent 6,514,733 B1.
35. Wu, C.-H., Chen, P.-H., Huang, Y.-L., Ranganathan, P., Rwei, S.-P., Chuan, F.-S.(2020). Solvent-Free One-Shot Synthesis of Thermoplastic Polyurethane Based on Bio-Poly(1,3-propylene succinate) Glycol with Temperature-Sensitive Shape Memory Behavior. ACS Omega, 5(8), 4058–4066,
36. Bikiaris, D.N., Papageorgiou, G.Z., Papadimitriou, S.A., Karavas, E., Avgoustakis, K.(2009). Novel Biodegradable Polyester Poly(Propylene Succinate): Synthesis and Application in the Preparation of Solid Dispersions and Nanoparticles of a Water-Soluble Drug. AAPS PharmSciTech, 10, 138–146.
37. Yokozawa, T., Yokoyama, A.(2007). Chain-growth polycondensation: The living polymerization process in polycondensation. Progress in Polymer Science. 32(1): 147-172.
38. Li, Q., Hunter, K.C., Allan L. L. East. A Theoretical Comparison of Lewis Acid vs Bronsted Acid Catalysis for n-Hexane → Propane + Propene. J. Phys. Chem. A, 109(28), 6223–6231.
39. Hans, R. K., Weidner, S.M., Falkenhagen, J.(2022). The role of transesterifications in reversible polycondensations and a reinvestigation of the Jacobson–Beckmann–Stockmayer experiments. Polym.. Chem., 13:1177-1185.
40. Schmallegger, M., Wiech, M., Soritz, S., Velásquez-Hernández, M.J., Bitschnau, B., Gruber-Woelfler, H., Gescheidt, G.(2025). Polystyrene-bound AlCl3 - a catalyst for the solvent-free synthesis of aryl-substituted tetrazoles. Catal. Sci. Technol., 15(6):1983-1988.
41. Shigemoto, I., Kawakami, T., Taiko, H., Okumura, M.(2011). A quantum chemical study on the polycondensation reaction of polyesters: The mechanism of catalysis in the polycondensation reaction. Polymer. 52(15):3443-3450.
42. Khodabakhshi, S., Karami, B., Eskandari, K., Rashidi, A.(2015). A Facile and Practical p-Toluenesulfonic Acid Catalyzed Route to Dicoumarols Containing an Aroyl group. S. Afr. J. Chem., 68:53–56.
43. Szabó-Réthy, E.(1971). Comments on the calculation methods of kinetics of polyesterification reactions. European Polymer Journal. 7(10):1485-1499.
44. Philipp, A.M., Rajagopalan, B., Congalidis, J.P., Murphy, E.R.(2012). Mathematical Modeling of Acid-Catalyzed 1,3-Propanediol Polymerization. Macromol. React. Eng., 6:126–152.

How to Cite

Md. Anwarul Karim*, and Md. Abu Bakr
I.H. 2024. Comparative Catalytic Efficiency and Polycondensation Kinetics of Succinic Acid and 1,3-Propanediol: A Kinetic Study of p-Toluene sulfonic Acid (p-TSA) versus AlCl3. Journal of Science and Engineering Papers . 
January 21, 2026.
  Doi: 10.62275/josep.26.1000025.
Md. Anwarul Karim*, and Md. Abu Bakr
Comparative Catalytic Efficiency and Polycondensation Kinetics of Succinic Acid and 1,3-Propanediol: A Kinetic Study of p-Toluene sulfonic Acid (p-TSA) versus AlCl3.
  journal 2026, 21.
Md. Anwarul Karim*, and Md. Abu Bakr
I.H. 2024. Comparative Catalytic Efficiency and Polycondensation Kinetics of Succinic Acid and 1,3-Propanediol: A Kinetic Study of p-Toluene sulfonic Acid (p-TSA) versus AlCl3. .Journal of Science and Engineering Papers . 
21 (1).
  https://doi.org/10.62275/josep.26.1000025.
Md. Anwarul Karim*, and Md. Abu Bakr
I.H. Comparative Catalytic Efficiency and Polycondensation Kinetics of Succinic Acid and 1,3-Propanediol: A Kinetic Study of p-Toluene sulfonic Acid (p-TSA) versus AlCl3. Journal of Science and Engineering Papers . 
2026.
Md. Anwarul Karim*, and Md. Abu Bakr
2024." Comparative Catalytic Efficiency and Polycondensation Kinetics of Succinic Acid and 1,3-Propanediol: A Kinetic Study of p-Toluene sulfonic Acid (p-TSA) versus AlCl3." Journal of Science and Engineering Papers . 
21 (1).
  https://doi.org/10.62275/josep.26.1000025.
Md. Anwarul Karim*, and Md. Abu Bakr
I.H. 2024. " Comparative Catalytic Efficiency and Polycondensation Kinetics of Succinic Acid and 1,3-Propanediol: A Kinetic Study of p-Toluene sulfonic Acid (p-TSA) versus AlCl3." Journal of Science and Engineering Papers . 
21 (1).
  https://doi.org/10.62275/josep.26.1000025.
Md. Anwarul Karim*, and Md. Abu Bakr
, "Comparative Catalytic Efficiency and Polycondensation Kinetics of Succinic Acid and 1,3-Propanediol: A Kinetic Study of p-Toluene sulfonic Acid (p-TSA) versus AlCl3". .Journal of Science and Engineering Papers . 
  journal Jan, 2026.
Md. Anwarul Karim*, and Md. Abu Bakr
"Comparative Catalytic Efficiency and Polycondensation Kinetics of Succinic Acid and 1,3-Propanediol: A Kinetic Study of p-Toluene sulfonic Acid (p-TSA) versus AlCl3." Journal of Science and Engineering Papers . 
Jan, 2026.
  https://doi.org/10.62275/josep.26.1000025.
Md. Anwarul Karim*, and Md. Abu Bakr
"Comparative Catalytic Efficiency and Polycondensation Kinetics of Succinic Acid and 1,3-Propanediol: A Kinetic Study of p-Toluene sulfonic Acid (p-TSA) versus AlCl3." Journal of Science and Engineering Papers . 
(Jan 21, 2026).
  https://doi.org/10.62275/josep.26.1000025.
Md. Anwarul Karim*, and Md. Abu Bakr
Comparative Catalytic Efficiency and Polycondensation Kinetics of Succinic Acid and 1,3-Propanediol: A Kinetic Study of p-Toluene sulfonic Acid (p-TSA) versus AlCl3. Journal of Science and Engineering Papers . 
  journal [ Internet ] 21 Jan, 2026.
  [ Cited 21 Jan, 2026 ]
21 (1).
  https://doi.org/10.62275/josep.26.1000025.

Keywords

p-TSA, AlCl₃, polycondensation, succinic acid, 1,3-propane diol, poly(trimethylenesuccinate), catalysis, polyesterification

Journal Metrics

Acceptance rate

-

Submission to final decision

-

Acceptance to publication

-

CiteScore

-

Journal Citation Indicator

-

Impact Score

-

APC

$12.5