1. Mochizuki, M., Hirami, M.(2019). Structural effects on the biodegradation of aliphatic polyesters. Polymers for Advanced Technologies, 8:203–209. https://doi.org/10.1002/(SICI)1099-1581(199704)8:4<203::AID-PAT627>3.0.CO;2-3
2. Carothers, W.H. (1931). Polymerization. Chem Rev 8:353–425.
3. Takiyama, E., Harigai, N., Hokari, T.(1993). Production of aliphatic polyester. JP Patent H5-70566.
4. Takiyama, E., Seki, S.(1993). Production of aliphatic polyester. JP Patent H5-70572.
5. Takiyama, E., Fujimaki, T., Seki, S., Hokari, T., Hatano, Y. (1994). Method for manufacturing biodegradable high molecular aliphatic polyester. US Patent 5,310,782.
6. Takiyama, E., Hatano, Y., Fujimaki, T., Seki, S., Hokari, T., Hosogane, T., Harigai, N.(1995). Method of producing a high molecular weight aliphatic polyester and film thereof. US Patent 5,436,056.
7. Fujimaki, T.(1998). Processability and properties of aliphatic polyesters, ‘‘BIONOLLE”, synthesized by polycondensation reaction. Polym. Degrad. Stab., 59:209–214.
8. Gan, Z., Abe, H., Doi, Y.(2000). Biodegradable poly(ethylene succinate) (PES) 1. Crystal growth kinetics and morphology. Biomacromolecules, 1:704–712.
9. Gan, Z., Abe, H., Doi, Y.(2000). Biodegradable poly(ethylene succinate) (PES) 2. Crystal morphology of melt-crystallized ultrathin film and its change after enzymatic degradation. Biomacromolecules, 1:713–720.
10. Qiu, Z., Ikehara, T., Nishi, T.(2003). Crystallization behaviour of biodegradable poly(ethylene succinate) from the amorphous state. Polymer, 44:5429–5437.
11. Qiu, Z., Komura, M., Ikehara, T., Nishi, T.(2003). DSC and TMDSC study of melting behaviour of poly(butylene succinate) and poly(ethylene succinate). Polymer, 44:7781–7785.
12. Papageorgiou, G.Z., Bikiaris, D.N.(2005). Crystallization and melting behavior of three biodegradable poly(alkylene succinates). A comparative study. Polymer, 46:12081–12092.
13. Bikiaris, D.N., Papageorgiou, G.Z., Achilias, D.S.(2006). Synthesis and comparative biodegradability studies of three poly(alkylene succinate)s. Polym. Degrad. Stab., 91:31–43.
14. Chrissafis, K., Paraskevopoulos, K.M., Bikiaris, D.N.(2005). Thermal degradation mechanism of poly(ethylene succinate) and poly(butylene succinate): comparative study. Thermochim Acta, 435:142–150.
15. Gan, Z., Abe, H., Doi, Y.(2001). Crystallization, melting, and enzymatic degradation of biodegradable poly(butylene succinate-co-14 mol% ethylene succinate) copolyester. Biomacromolecules, 2: 313–321.
16. Gan, Z., Abe, H., Kurokawa, H., Doi, Y. (2001). Solid-state microstructures, thermal properties, and crystallization of biodegradable poly(butylene succinate) (PBS) and its copolyesters. Biomacromolecules, 22:605–613.
17. Ahn, B.D., Kim, S.H., Kim, Y.H., Yang, J.S.(2001). Synthesis and characterization of the biodegradable copolymers from succinic acid and aliphatic acid with 1,4-butanediol. J. Appl. Polym. Sci., 82:2808–2826.
18. Nikolic, M.S., Djonlagic, J.(2001). Synthesis and characterization of biodegradable poly(butylene succinate-co-butylene adipate)s. Polym. Degrad. Stab., 74:263–270.
19. Kuwabara, K., Gan, Z., Nakamura, T., Abe, H., Doi, Y.(2002). Molecular mobility and phase structure of biodegradable poly(butylene succinate) and poly(butylene succinate-co-butylene adipate). Biomacromolecules, 3:1095–1100.
20. Zhu, C., Zhang, Z., Liu, Q., Wang, Z., Jin, J.(2003). Synthesis and biodegradation of aliphatic polyesters from dicarboxylic acids and diols. J. Appl. Polym. Sci., 90:982–990.
21. Cao, A., Okamura, T., Nakayama, K., Inoue, Y., Masuda, T.(2002). Studies on syntheses and physical properties of biodegradable aliphatic poly(butylene succinate-co-ethylene succinate)s and poly(butylene succinate-co-diethylene glycol succinate)s. Polym. Degrad. Stab., 8:107–117.
22. Cao, A., Okamura, T., Ishiguro, C., Nakayama, K., Inoue, Y., Masuda, T.(2002). Studies on syntheses and physical characterization of biodegradable aliphatic poly(butylene succinate-co-e-caprolactone)s. Polymer, 43:671–679.
23. Kim, M.N., Kim, K.H., Jin, H.J., Park, J.K., Yoon, J.S.(2001). Biodegradability of ethyl and n-octyl branched poly(ethylene adipate) and poly(butylene succinate). Eur. Polym. J., 37:1843–1847.
24. Chae, H.G., Park, S.H., Kim, B.C., Kim, D.K.(2004). Effect of methyl substitution of the ethylene unit on the physical properties of poly(butylene succinate). J. Polym. Sci. Part B: Polym. Phys., 42:1759–1766.
25. Oishi, A., Nakano, H., Fujita, K., Yuasa, M., Taguchi, Y.(2002). Copolymerization of poly(butylene succinate) with 3-alkoxy-1,2-propanediols. Polym. J. 34:742–747.
26. Mani, R., Bhattacharya, M., Leriche, C., Nie, L., Bassi, S.(2002). Synthesis and characterization of functional aliphatic copolyesters. J. Polym. Sci. Part A: Polym. Chem., 40:3232–9.
27. Nikolic, M.S., Poleti, D., Djonlagic, J. (2003). Synthesis and characterization of biodegradable poly(butylene succinate-co-butylene fumarate)s. Eur. Polym. J., 39:2183–92.
28. Mochizuki, M., Mukai, K., Yamada, K., Ichise, N., Murase, S., Iwaya, Y.(1997). Structure effects upon enzymatic hydrolysis of poly(butylene succinate-coethylene succinate)s. Macromolecules, 30:7403–7.
29. Rizzarelli, P., Puglisi, C., Montaudo, G.(2004). Soil burial and enzymatic degradation in solution of aliphatic co-polyesters. Polym. Degrad. Stab., 85:855–863.
30. Iwata, T., Doi, Y., Isono, K., Yoshida, Y.(2001). Morphology and enzymatic degradation of solution-grown single crystals of poly(ethylene succinate). Macromolecules, 34:7343–7348.
31. Cho, K., Lee, J., Kwon, K.(2001) Hydrolytic degradation behavior of poly(butylene succinate)s with different crystalline morphologies. J. Appl. Polym. Sci.,79:1025–1033.
32. Slaugh, L.H., Weider, P.R.(1993). Process for making 3-hydroxypropanal and 1,3-propanediol. US Patent 5,256,827.
33. Haynie, S.L., Wagner, L.W. (1997). Process for making 1,3-propanediol from carbohydrates using mixed microbial cultures. US Patent 5,599,689.
34. Emptage, M., Haynie, S.L., Laffend, L.A., Pucci, J.P., Whited, G.(2003). Process for the biological production of 1,3-propanediol with high titer. US Patent 6,514,733 B1.
35. Wu, C.-H., Chen, P.-H., Huang, Y.-L., Ranganathan, P., Rwei, S.-P., Chuan, F.-S.(2020). Solvent-Free One-Shot Synthesis of Thermoplastic Polyurethane Based on Bio-Poly(1,3-propylene succinate) Glycol with Temperature-Sensitive Shape Memory Behavior. ACS Omega, 5(8), 4058–4066,
36. Bikiaris, D.N., Papageorgiou, G.Z., Papadimitriou, S.A., Karavas, E., Avgoustakis, K.(2009). Novel Biodegradable Polyester Poly(Propylene Succinate): Synthesis and Application in the Preparation of Solid Dispersions and Nanoparticles of a Water-Soluble Drug. AAPS PharmSciTech, 10, 138–146.
37. Yokozawa, T., Yokoyama, A.(2007). Chain-growth polycondensation: The living polymerization process in polycondensation. Progress in Polymer Science. 32(1): 147-172.
38. Li, Q., Hunter, K.C., Allan L. L. East. A Theoretical Comparison of Lewis Acid vs Bronsted Acid Catalysis for n-Hexane → Propane + Propene. J. Phys. Chem. A, 109(28), 6223–6231.
39. Hans, R. K., Weidner, S.M., Falkenhagen, J.(2022). The role of transesterifications in reversible polycondensations and a reinvestigation of the Jacobson–Beckmann–Stockmayer experiments. Polym.. Chem., 13:1177-1185.
40. Schmallegger, M., Wiech, M., Soritz, S., Velásquez-Hernández, M.J., Bitschnau, B., Gruber-Woelfler, H., Gescheidt, G.(2025). Polystyrene-bound AlCl3 - a catalyst for the solvent-free synthesis of aryl-substituted tetrazoles. Catal. Sci. Technol., 15(6):1983-1988.
41. Shigemoto, I., Kawakami, T., Taiko, H., Okumura, M.(2011). A quantum chemical study on the polycondensation reaction of polyesters: The mechanism of catalysis in the polycondensation reaction. Polymer. 52(15):3443-3450.
42. Khodabakhshi, S., Karami, B., Eskandari, K., Rashidi, A.(2015). A Facile and Practical p-Toluenesulfonic Acid Catalyzed Route to Dicoumarols Containing an Aroyl group. S. Afr. J. Chem., 68:53–56.
43. Szabó-Réthy, E.(1971). Comments on the calculation methods of kinetics of polyesterification reactions. European Polymer Journal. 7(10):1485-1499.
44. Philipp, A.M., Rajagopalan, B., Congalidis, J.P., Murphy, E.R.(2012). Mathematical Modeling of Acid-Catalyzed 1,3-Propanediol Polymerization. Macromol. React. Eng., 6:126–152.