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Since the dawn of time, plant-based foodstuffs have been an indispensable 

component of human nutrition. This hasn't evolved, but the heavy metal 

contamination of soil and edible vegetable portions is currently a global grave 

threat to the environment. One of the predominant components contributing to 

agricultural contamination includes heavy metals. Anthropogenic activities and 

rapid industrialization can introduce dangerous and invisible heavy metals 

throughout the soil, water, air, and plants, among other environmental 

components. In addition to being critical for plants to flourish consistently, 

heavy metals also play substantial functions in basic nucleic acid metabolisms, 

electron transfer, redox reactions, and as direct participants in several enzymes. 

It is crucial that these vital metals be present in growth media at a certain 

concentration, yet an excess of them might have detrimental consequences 

ranging from deadly ailments. The article reviewed the existing understanding 

of how those released toxic heavy metals penetrate the food chain, biomagnify 

into cells when they are consumed as vegetables, and cause potentially 

catastrophic consequences to health. These harmful metals have a significantly 

higher propensity to bioaccumulate and turn deadly in human beings.   
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1. Introduction 

 

Over the past 200 years, urbanization and industrialization 

have grown at a rapid rate, resulting in significant levels of 

air, water, and soil pollution. Because of their toxicity, 

persistence, and capacity to build up in the biota, trace metals 

in the environment continue to pose a hazard even if 

persistent organic contaminants and greenhouse gases have 

received more attention [1]. Cadmium (Cd), Chromium (Cr), 

mercury (Hg), arsenic (As), lead (Pb), and other metalloids 

having a density of greater than 5 g/cm3 are examples of 

heavy metals. Besides polluting the environment, heavy 

metals can seriously injure humans by building up in bodily 

organs and other living things via the food chain [2, 3]. 

Exposure to heavy metals in soil primarily occurs via 

inhalation, oral consumption, and skin touch, constituting the 

three main routes of human contact [4, 5]. The main causes 

of heavy-metal pollution include milling, industrialization, 

burning fossil fuels, agrochemicals, and mining which release 

a range of HHMs into agricultural soils and water bodies, 

including Pb, Cr, Co, Cd, Zn, As, Ni, Cu and Hg [6-8]. 

Because they include essential nutrients that humans need to 

survive, vegetables are a vital part of a typical diet. 

Additionally, they serve as protective meals by helping 

people prevent disorders. Vegetables may gather greater 

concentrations of hazardous heavy metal when cultivated 

near heavy metal pollution sources [9]. The accumulation of 

heavy metals in vegetables as well as crops that are edible in 

contaminated soils eventually poses a major risk to the 

human body as well as animal health as a result of the  

detrimental and irreversible effects of metals [10]. Few heavy 

metals such as Co [11], Mn [12], Zn [13], Cu [14] and Ni 

[15] are key components at certain levels in humans yet they 

become toxic when exposed to higher doses. Heavy metals 

pose significant health risks, particularly Pb along with Cd, 

which can cause damage for example malformations and 
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bone fractures, along with hypertension, kidney failure, 

cardiovascular problems and other severe nervous system, 

immune system, lung and liver diseases [16-18]. Memory 

loss, heart problems, digestive disorders, and genotoxicity are 

among the negative consequences of mercury poisoning [19]. 

Many analytical methods and instruments use mercury (Hg), 

such as barometers and thermometers, blood pressure 

monitors with fluorescent illumination, amalgam for dental 

restoration, and fluorescent lighting [20]. Heavy metal 

accumulation at chronic level in the liver, kidney and bones 

of humans can result in kidney, cardiovascular, neurological, 

and bone illnesses. This buildup can be caused by long-term 

ingestion of high quantities of heavy metals through 

contaminated food. These days, as more people become 

aware of the health dangers linked with heavy metal 

exposure, risk assessment has become a global hot subject 

[21]. 

 

2. Heavy metal sources causing soil and vegetable 

contamination 

 

Plant food contamination can result from air pollution or by 

coming into touch with polluted soil. Heavy metals from 

various sources can deteriorate the soil, which is essential to 

the growth of food crops. Anthropogenic activities related to 

agriculture and industry are the main causes of soil pollution 

with heavy metals worldwide [22-24]. Soil-crop ecosystems 

are impacted by sewage from industries, irrigation, 

agricultural practices, and mining activities in highly 

populated and developing nations [25]. The use of specific 

inorganic and organic fertilisers, insecticides, herbicides, and 

organic manure that contain heavy metals can potentially 

boost heavy metal content in soils [26, 27]. The swift 

advancement of industrialization around the globe has led to 

a notable rise in the likelihood of heavy metal pollution in the 

environment. Toxic materials build up in the soil, air, water 

as a consequence of rapid industrialization, chaotic 

urbanisation, and long-term heavy fertiliser and pesticide 

usage [28, 29]. In part because of the higher concentrations 

of heavy metals and metalloids in leachates from municipal 

solid waste dumps, inadequate garbage disposal methods can 

also affect soil-crop systems [30]. The amount of heavy 

metals in food is directly impacted by soil contamination 

since samples of plant food taken from contaminated soils 

have been shown to accumulate these hazardous elements. 

[31-33]. Different origins of those heavy metals and their 

injurious proliferation on vegetables as well as crops are 

given in Table 1. 

 

3. Heavy metal contamination in soil 

 

Heavy metal accumulation in soil is the most significant. 

Heavy metals, which include chromium (Cr), arsenic (As), 

copper (Cu), cadmium (Cd), mercury (Hg), zinc (Zn), nickel 

(Ni), and lead (Pb) are often found contaminants in soil 

environments. This kind of pollution is pervasive, long-

lasting, and physiologically hazardous in the soil 

environment [44]. A vital component of any ecosystem is 

soil. Because of its capacity to both absorb and emit, soil may 

get contaminated from various sources [45]. The weathering 

of rocks, volcanic activity, and erosion are the primary 

natural sources of the incorporation of heavy metals into 

soils. Anthropogenic sources include smelting, ore mining 

operations, landfills, industry effluents, electroplating, 

military training and warfare, use of phosphate fertiliser and 

pesticides, biosolids utilisation (such as fertilisers, animal 

manure, and municipal effluent), and atmospheric deposition 

[46, 47]. The excess soil contamination scale is 16.1%, with 

the highest over-standard concentrations of heavy metals 

being Pb, Cd, Hg, As, and Cr at 1.50%, 7.0%, 1.60%, 2.70%, 

and 1.10%, respectively [48]. The overall state of the soil in 

agricultural settings can serve as a marker for heavy metal 

pollution brought on by farming practices [49]. The soil has 

already begun to absorb the majority of these heavy metals. 

On the contrary, long-term exposure to heavy metals can 

cause bone fractures and lung cancer in humans [50, 51]. 

Remediation methods for heavy metal-polluted soil have 

been extensively studied. These methods include ex-situ 

remediation methods (soil washing, landfilling, vitrification, 

solidification) and in-situ methods (electrokinetic process of 

extraction, encapsulation, surface capping, chemical 

immobilisation, phytoremediation, soil flushing, and 

bioremediation) [52-54]. 

 

4. Mechanism of toxic heavy metals accumulation in 

vegetables 

 

Notwithstanding the mass amount of heavy metals in aerial 

tissues and excluders, different plants as well as vegetables 

serve as accumulators and evidence of survival. Plants that 

successfully undergo biodegradation or biotransformation of 

pollutants into innocuous arrangements inside their tissues 

have higher rates of survival [62]. Plants accumulate 

hazardous heavy metals through various mechanisms, 

including absorption by root, xylem loading, heavy metal 

mobilisation, root-to-shoot transit, cellular compartmentation, 

and sequestration. The bioaccumulations of heavy metals in 

different organs of vegetables are given in Table 2. Almost 

all heavy metals are found in soil in an insoluble form which 

is not bioavailable to plants. Different root exudates that 

plants release can change the rhizosphere's pH along with 

enhancing the solubility of heavy metals, hence increasing 

their bioavailability [63, 64].  

 

Vegetables absorb the heavy metals found in soil organic 

matter, and when they connect to short carbon atom chains, 

they transform into crucial cations [65]. In root hairs, heavy 

metals are actively transferred to the root cell plasma 

membrane from the apoplast or the soil. Upward movement, 

vacuoles, and barriers in the xylem as well as phloem are 

crucial for the translocation of the absorbed metals to the 

shoot [66]. The bioavailable metal penetrates the cell wall to 

access the root cells after being absorbed at the root surface. 

The two main pathways by which heavy metals are taken by 
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roots are the symplastic pathway (active transport against 

electrochemical potential gradients and concentration across 

the plasma membrane) and the apoplastic pathway (passive 

diffusion) [67]. 

 

soil pH, dissolved cations and anions, chemical pesticides, 

and species of vegetation, fertilisers, and soil type all affect 

how much hazardous metal is taken up from the soil [62]. In 

the rhizosphere, bacteria generate DMA (dimethyl arsenic 

acid) and MMA (monomethyl arsenic acid), nevertheless, 

this is insufficient to initiate the methylation of As in plants 

[68]. As is catalyzed by specific enzymes, which includes 

Sadenosylmethionine-dependent arsenite methyltransferase, 

which is also crucial for the biogeochemical pathway of As 

[69]. Numerous metal transporters are involved in the 

mobilisation along with the transfer of metals from one 

compartment of cells and plant organs to another, including 

OsHMA2, OsHMA3, OsNramp5, Lsi1, NIP, Lsi2, MMA, 

HAC, ABC, DMA, and PT [70]. 

Table 1. Different origins of heavy metals and their toxic contamination of vegetable /crops 

Source of 

Heavy Metals 

Heavy Metal 

Present 
Contamination Vegetable/crop Region Reference 

Industries 

Cd, Co, Cr, 

Cu, Fe, Mg, 

Mn, Pb, Zn 

Leafy 

vegetables 

Lactuca sativa, Raphanus sativus, 

Mentha piperita, 

Petroselinum crispum, Eruca Sativa 

Jazan, Saudi 

Arabia 
[34] 

Soil Pb, Hg, Cd, As 
Vegetable and 

fruit 

Daucus carota, Trigonella foenum-

graecum, Allium sativum, Zingiber 

officinale, Solanum 

tuberosum,  Raphanus sativus, Allium 

cepa etc 

Maharashtra, 

India 
[35] 

Soil 

Cr, Cd, Pb, Ni, 

Cu, Zn, Fe, 

Mn 

Leafy and root 

vegetables 

Beta vulgaris L, Raphanus sativus L, 

Daucus carota, Brassica 

rapa, Brassica nigra, Brassica 

oleracea, Spinacia oleracea 

L., Coriandrum sativum, Mentha 

Dhaka, 

Bangladesh 
[36] 

Contaminated 

waterbody 

As, Zn, Cd, 

Pb, Cu, Hg, Co 

Vegetables and 

soil 

Brassica oleracea, 

Solanum lycopersicum 

Koka area of 

central 

Ethiopia  

[37] 

Soil 

Cu, Ni, Fe, Zn, 

Cd, Pb, As, 

Mn, N, P 

Vegetable 

Solanum tuberosum, Cucumis sativus, 

Solanum lycopersicum, Daucus 

carota, Lactuca sativa , Spinacia 

oleracea 

Isfahan, Iran  [38] 

Wastewater 

Cd, Cu, Zn, 

Al, Cr, Co, 

Mn, Fe, Pb, V, 

Mo 

Soils and 

vegetables 

Avena sativa L., Cynara scholymus L., 

Medicago sativa L., Corchorus 

olitorius L., Cynodon dactylon L. 

Asmara, 

Eritrea  
[39] 

Wastewater 

treatment plant 
Pb, Cd, Zn, Cu 

Water, soil, 

crops 

Triticum turgidum, Eruca. Sativa, 

Malus sylvestris, Vicia faba, Triticum 

aestivum, Madia sativa and Urtica 

dioica 

Marrakech, 

Morocco 
[31] 

Wastewater of 

Shitalakhya 

River 

Cu, Ni, Cd, Cr, 

Pb, Zn 

Vegetables,  

Soil 

Cucurbita moschata, Spinacia 

oleracea, Amaranthus lividus, Basella 

alba, and Trichosanthes cucumerina 

Narayangonj, 

Bangladesh 
[40] 

Soil Hg Vegetables 

Phaseolus vulgaris, Raphanus 

raphanistrum, Brassica rapa, 

Brassica oleracea, Spinacia oleracea, 

Solnum melongena, and Piper nigru 

China [41] 

Region 

Impacted by 

Mine 

Pb,  As, Cd, 

Cu 
Vegetables, Soil 

Piper nigrum, Amaranthus dubius, ,  

Phaseolus vulgaris  Solanum 

melongena,  Ipomoea batatas, 

Solanum lycopersicum, and  Ipomoea 

aquatic 

Daye, China [42] 

Commercial and 

municipality 

sewage water 

Ni, Zn, Pb, Cd Crops, Soil Oryza sativa Lenjan, Iran [43] 
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Heavy metal ions have a tendency to combine with a variety 

of chelators, including organic acids, after they have entered 

root cells. These complexes, which include phosphate 

precipitate, sulphate, and carbonate, are subsequently 

immobilised in either the intracellular (symplastic 

compartments, including vacuoles) or extracellular 

(apoplastic cellular walls) [71]. Through the root symplasm, 

the metal ions contained inside the vacuoles may travel into 

the stele as well as the xylem stream [72]. Heavy metals are 

mostly accumulated in leaves by xylem-loading absorption, 

and in seeds and fruits through phloem-loading [73] are then 

transported by xylem vessels to the shoots. They are carried 

and dispersed throughout leaves by apoplast or symplast, 

where they are confined in extracellular compartments (cell 

walls) or plant vacuoles, preventing the buildup of free metal 

ions in the cytosol [74]. Metal ion transporters and 

complexing agents are two of the many molecules that 

mediate the uptake and translocation of heavy metals in 

plants. The absorption of heavy metal ions from soil depends 

on these specialised transporters, channel proteins, also 

known as H+-coupled carrier proteins, which are present in 

the plasma membrane of root cells. In addition to mediating 

the influx-efflux of metal translocation from roots to shoots, 

they are capable of moving certain metals across cellular 

membranes [75]. Several heavy metal ions, for example, 

Fe2+, Co2+, Cd2+, Mn2+, and Cu2+ are also transported by the 

naturally resistant associated macrophage proteins 

(NRAMPs) [76, 77]. In addition to metal ion transporters, 

amino acids as well as organic acids, which are complexing 

agents, function as metal ligands to contribute to the 

chelation of heavy metal ions. For instance, in the xylem, 

citrate also is a significant chelator for Ni and Fe [67, 71, 78]. 

The bioaccumulations of heavy metals in different organs of 

vegetables are presented in Table 2. 

 

5. Health risk assessment 

 

A human health risk assessment (HRA) is the method of 

determining the kind along probability of adverse health 

outcomes in individuals who could be subjected to chemicals 

or other potentially dangerous substances in the environment. 

An HRA is a type of health inquiry designed to evaluate a 

person's health risks and quality of life [16]. This section 

describes some of the parameters found in the literature used 

to calculate the HRA. 

 

5.1 Bio-concentration factor (BCF) 

 

BCF is an essential term in health risk assessment since it 

provides quantifiable information on a contaminant's capacity 

to be taken up by organisms. It is frequently employed as a 

preliminary screening measure for bioaccumulative, 

hazardous, and persistent chemicals. The BCF of heavy 

metals in soils and vegetables was calculated by dividing the 

concentration of each heavy metal in the edible parts of the 

vegetables by the concentration of the heavy metal in the soil 

sample. A lower BCF score indicates less heavy metal 

transport from soil to crops. BCF values larger than one, on 

the other hand, indicate that the investigated plants absorb 

more heavy metals from the soil [79]. The bioconcentration 

factor is assessed by following Eq. 1 
 

𝐵𝐶𝑓 =
𝐶𝑣

𝐶𝑠
      (1) 

 

Where, Cs = heavy metals in soil samples (ppm), Cv = heavy 

metals in vegetables on a dry weight (DW) basis (ppm),  

 

5.2 Estimated daily intake (EDI) 

 

Daily intake is determined by both metal content in food and 

daily food consumption. Furthermore, the human body 

weight can impact contamination tolerance. The EDI is a 

notion that was developed to account for these concerns. Eq. 

2 is used to calculate the anticipated daily intake for each 

element. The EDI value of each metal may be used to 

calculate the health risk of a vegetable. 
 

𝐸𝐷𝐼 =
𝐸𝑓×𝐸𝐷×𝐹𝐼𝑅×𝐶𝑀×𝐶𝑓

𝐵𝑊×𝑇𝐴
 × 10−3   (2) 

 

Where Ef denotes exposure frequency (365 days/year); ED 

means exposure duration, equivalent to average lifetime; FIR 

is equal to average food (vegetable) consumption; CM 

denotes metal concentration (ppm dry weight); Cf is equal to 

0.085 which is concentration conversion factor; Bw denotes 

reference body weight for an adult; TA means the average 

exposure time in 65 years (23,725 days) and 10-3 is unit 

conversion factor [80-82]. 

 

5.3 Target hazard quotient (THQ) 

 

The target hazard quotient (THQ) is the ratio of hazardous 

element exposure to the reference dosage, which is the 

greatest amount at which no adverse health consequences are 

predicted. The THQ method is used to assess the non-

carcinogenic danger of eating infected crops [83]. 
 

𝑇𝐻𝑄 = 
𝐸𝐷𝐼

𝑅𝑓𝐷
     (3) 

 

Where RfD is the oral reference dose (mg/kg/day). If THQ is 

less than 1, the exposed population is unlikely to suffer 

visibly adverse repercussions. When THQ is equal to or more 

than 1, there is a potential health concern, and proper 

preventative measures and steps should be taken. 

 

5.4 The carcinogenic risk index (CRI) 

 

The carcinogenic risk index determines a human's lifetime 

risk of acquiring cancer. CRI is used to assess the potential 

human health risk of recognised carcinogens. The CRI is 

computed by multiplying the EDI by the oral cancer slope 

factor (CSF) for the heavy metals in question [84]. The 

following formula is used to calculate the CRI. 
 

           𝐶𝑅𝐼 = 𝐸𝐷𝐼 × 𝐶𝑆𝐹    (4) 
 

When the CRI is larger than, the exposed people are at a 

major carcinogenic risk; but, when the CRI is less than, the 
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exposed populations are not at a significant carcinogenic risk. 

Furthermore, if TR and/or TCR levels are between 10-4 and 

10-6, the exposed populations are at high risk of cancer [84]. 

 

5. Conclusion: 

 

Food supply chain contamination is one of the noteworthy 

approaches that heavy metals penetrate human body. It is 

potentially dangerous to human beings and impedes the 

worldwide supply of food. The main causes of food chain 

contamination are inadequate effluent management, lax 

enforcement of standards and laws, a lack of research 

evidence on sustainable management, and low public 

consciousness. In the end, food safety is concealed by these 

constraints. This review has uncovered the root causes of 

heavy metal pollution, how they contaminate food chains, 

how plants carry metals, and the way our bodies absorb them. 

Transportation of heavy metals into plants, including fruits 

and vegetables, is mostly due to soil pollution. For this 

reason, attaining food safety and security on a global scale is 

hampered by the buildup of heavy metal(loid)s in agricultural 

soils. Although bioremediation is a potential natural remedy 

for heavy metal(loid) pollution, several problems require to 

be resolved before it can be used more widely. Accelerating 

global soil mapping and developing regional models capable 

of accurately predicting pollutant distributions and 

pinpointing contamination sources will be advantageous.  

Biosorbents offer appealing prospects as an inexpensive way 

to prevent pollution in the environment. Nanotechnology is 

another exciting field that can remediate heavy metal-

containing wastewater before it is released into the 

environment. By using these technologies, heavy metal 

content in the soil may be decreased, and as a result, the 

bioaccumulation of heavy metals in vegetables can be 

reduced as well. Heavy metal removal technologies comprise 

electrolytic recovery, membrane filtration, ion exchange, 

adsorption, precipitation, and more. It is indispensable that 

further research be conducted to develop more pocket 

friendly, sophisticated, and ecologically conscious versions 

of them to fulfil the prerequisites for the removal of heavy 

metals from our soil as well as food web.  
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