1. Thakur, S., Thakur, V. K., and Arotiba, O. A., (2018). History, classification, properties and application of hydrogels: An overview. Hydrogels: Recent Advances: 29-50.
2. Brannon-Peppas, L. and Peppas, N. A., (1991). Equilibrium swelling behavior of pH-sensitive hydrogels. Chemical Engineering Science, 46(3): 715-722.
3. Kloxin, A. M., Kloxin, C. J., Bowman, C. N., and Anseth, K. S., (2010). Mechanical properties of cellularly responsive hydrogels and their experimental determination. Advanced materials, 22(31): 3484-3494.
4. Peppas, N. A., Bures, P., Leobandung, W., and Ichikawa, H., (2000). Hydrogels in pharmaceutical formulations. European journal of pharmaceutics and biopharmaceutics, 50(1): 27-46.
5. Qiu, Y. and Park, K., (2001). Environment-sensitive hydrogels for drug delivery. Advanced drug delivery reviews, 53(3): 321-339.
6. He, B., Wan, E., and Chan-Park, M. B., (2006). Synthesis and degradation of biodegradable photo-cross-linked poly (α, β-malic acid)-based hydrogel. Chemistry of materials, 18(17): 3946-3955.
7. Treloar, L., (1952). The thermo dynamic study of rubber-like elasticity. Proceedings of the Royal Society of London. Series B-Biological Sciences, 139(897): 506-512.
8. Kumar, S. and Pandey, A. K., (2013). Chemistry and biological activities of flavonoids: an overview. The scientific world journal, 2013(1): 162750.
9. Kamath, K. R. and Park, K., (1993). Biodegradable hydrogels in drug delivery. Advanced drug delivery reviews, 11(1-2): 59-84.
10. Peppas, N. A., Huang, Y., Torres-Lugo, M., Ward, J., and Zhang, J., (2000). Physicochemical foundations and structural design of hydrogels in medicine and biology. Annual review of biomedical engineering, 2(1): 9-29.
11. Li, M., Cha, D. J., Lai, Y., Villaruz, A. E., Sturdevant, D. E., and Otto, M., (2007). The antimicrobial peptide‐sensing system aps of Staphylococcus aureus. Molecular microbiology, 66(5): 1136-1147.
12. Mitsumata, T., Suemitsu, Y., Fujii, K., Fujii, T., Taniguchi, T., and Koyama, K., (2003). pH-response of chitosan, κ-carrageenan, carboxymethyl cellulose sodium salt complex hydrogels. Polymer, 44(23): 7103-7111.
13. Hirsch, S. G. and Spontak, R. J., (2002). Temperature-dependent property development in hydrogels derived from hydroxypropylcellulose. Polymer, 43(1): 123-129.
14. Jaiswal, M. and Koul, V., (2013). Assessment of multicomponent hydrogel scaffolds of poly (acrylic acid-2-hydroxy ethyl methacrylate)/gelatin for tissue engineering applications. Journal of biomaterials applications, 27(7): 848-861.
15. Ricka, J. and Tanaka, T., (1984). Swelling of ionic gels: quantitative performance of the Donnan theory. Macromolecules, 17(12): 2916-2921.
16. Zhu, J. and Marchant, R. E., (2011). Design properties of hydrogel tissue-engineering scaffolds. Expert review of medical devices, 8(5): 607-626.
17. Kabiri, K., Omidian, H., Zohuriaan‐Mehr, M., and Doroudiani, S., (2011). Superabsorbent hydrogel composites and nanocomposites: a review. Polymer composites, 32(2): 277-289.
18. Taşdelen, B., Erdoğan, S., and Bekar, B., (2018). Radiation synthesis and characterization of chitosan/hyraluronic acid/hydroxyapatite hydrogels: Drug uptake and drug delivery systems. Materials today: proceedings, 5(8): 15990-15997.
19. Katono, H., Sanui, K., Ogata, N., Okano, T., and Sakurai, Y., (1991). Drug release off behavior and deswelling kinetics of thermo-responsive IPNs composed of poly (acrylamide-co-butyl methacrylate) and poly (acrylic acid). Polymer journal, 23(10): 1179-1189.
20. Shantha, K. and Harding, D., (2002). Synthesis and evaluation of sucrose‐containing polymeric hydrogels for oral drug delivery. Journal of applied polymer science, 84(14): 2597-2604.
21. Sri, B., Ashok, V., and Arkendu, C., (2012). As a review on hydrogels as drug delivery in the pharmaceutical field. Int J Pharm Chem Sci, 1(2): 642-61.
22. Ashley, G. W., Henise, J., Reid, R., and Santi, D. V., (2013). Hydrogel drug delivery system with predictable and tunable drug release and degradation rates. Proceedings of the national academy of sciences, 110(6): 2318-2323.
23. Park, C. H., Jeong, L., Cho, D., Kwon, O. H., and Park, W. H., (2013). Effect of methylcellulose on the formation and drug release behavior of silk fibroin hydrogel. Carbohydrate polymers, 98(1): 1179-1185.
24. Gerami, S. E., Pourmadadi, M., Fatoorehchi, H., Yazdian, F., Rashedi, H., and Nigjeh, M. N., (2021). Preparation of pH-sensitive chitosan/polyvinylpyrrolidone/α-Fe2O3 nanocomposite for drug delivery application: Emphasis on ameliorating restrictions. International Journal of Biological Macromolecules, 173: 409-420.
25. Palem, R. R., Rao, K. M., Shimoga, G., Saratale, R. G., Shinde, S. K., Ghodake, G. S., and Lee, S.-H., (2021). Physicochemical characterization, drug release, and biocompatibility evaluation of carboxymethyl cellulose-based hydrogels reinforced with sepiolite nanoclay. International Journal of Biological Macromolecules, 178: 464-476.
26. Sachan, N. and Bhattacharya, A., (2009). Modeling and characterization of drug release from glutinous rice starch based hydrogel beads for controlled drug delivery. International Journal of Health Research, 2(1).
27. Shaikh, H. M., Anis, A., Poulose, A. M., Al-Zahrani, S. M., Madhar, N. A., Alhamidi, A., and Alam, M. A., (2021). Isolation and characterization of alpha and nanocrystalline cellulose from date palm (Phoenix dactylifera L.) trunk mesh. Polymers, 13(11): 1893.
28. Jia, F., Liu, H.-j., and Zhang, G.-g., (2016). Preparation of carboxymethyl cellulose from corncob. Procedia Environmental Sciences, 31: 98-102.
29. Pal, K., Banthia, A. K., and Majumdar, D. K., (2007). Preparation and characterization of polyvinyl alcohol-gelatin hydrogel membranes for biomedical applications. Aaps Pharmscitech, 8(1): 21.
30. Nagasawa, N., Yagi, T., Kume, T., and Yoshii, F., (2004). Radiation crosslinking of carboxymethyl starch. Carbohydrate Polymers, 58(2): 109-113.
31. Mishra, R. K., Datt, M., and Banthia, A. K., (2008). Synthesis and characterization of pectin/PVP hydrogel membranes for drug delivery system. Aaps Pharmscitech, 9(2): 395-403.
32. Bonev, B., Hooper, J., and Parisot, J., (2008). Principles of assessing bacterial susceptibility to antibiotics using the agar diffusion method. Journal of antimicrobial chemotherapy, 61(6): 1295-1301.
33. Ali, A. E.-H., Shawky, H., Abd El Rehim, H., and Hegazy, E., (2003). Synthesis and characterization of PVP/AAc copolymer hydrogel and its applications in the removal of heavy metals from aqueous solution. European polymer journal, 39(12): 2337-2344.
34. Sikdar, B., Basak, R., and Mitra, B., (1995). Studies on graft copolymerization of acrylonitrile onto jute fiber with permanganate ion initiation system in presence of air. Journal of applied polymer science, 55(12): 1673-1682.
35. Kundukad, B., Schussman, M., Yang, K., Seviour, T., Yang, L., Rice, S. A., Kjelleberg, S., and Doyle, P. S., (2017). Mechanistic action of weak acid drugs on biofilms. Scientific reports, 7(1): 4783.
36. Singh, B., Chauhan, G., Sharma, D., and Chauhan, N., (2007). The release dynamics of salicylic acid and tetracycline hydrochloride from the psyllium and polyacrylamide based hydrogels (II). Carbohydrate polymers, 67(4): 559-565.